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Abstract

Four hundred and sixty-nine samples of fir, cinder heather, chestnut, lavender, acacia, rape, and sunflower honey were char-

acterized by their moisture, conductivity, diastase activity, pH, free acidity, color, hydroxymethylfurfural and percentage of fruc-

tose, glucose, saccharose, erlose, raffinose, and melezitose. A principal component analysis performed on the corresponding matrix

yielded the formation of four clusters. A stepwise discriminant analysis allowed us to obtain 100% of good predictions with only

conductivity, pH, free acidity and percentage of fructose, glucose, and raffinose as variables. The simulation performances of the

model were estimated from an external testing set.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, the food products have to satisfy nu-

merous quality and certification criteria before com-

mercialization, especially in industrial countries, where

there is a need to have food products of high quality
with well-defined characteristics. Honey is no exception

and in Europe, its composition as well as manufacture is

regulated by the Council Directive 74/409/EEC of 22

July 1974. In June 2000, the Council reached political

agreement on a new honey Directive to harmonize the

common European market. Consequently, honey pro-

ducers have now to indicate the botanical (floral or

vegetable) and geographical (regional or territorial) or-
igin of the honey. In the frame of this new Directive, the

development of harmonized analytical methods to easily

assess labeling compliance is also encouraged.
* Corresponding author. Tel.: +33-(0)4-78-08-49-84; fax: +33-(0)4-

78-08-56-37.

E-mail address: j.devillers@ctis.fr (J. Devillers).

0308-8146/$ - see front matter � 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.foodchem.2003.09.029
These requirements are not easy to satisfy. Indeed,

honey is a natural substance made when the nectar and

sweet deposits from plants are gathered, modified and

stored in the honeycomb by honey bees. Consequently,

its composition is defined by numerous factors and

subject to variation.
Traditionally, the determination of the floral origin of

honey is made from palynological analysis. The method

is based on the identification of pollen by microscopic

inspection. The shortcomings of melissopalynology have

been stressed by Anklam (1998). They deal with the

variability in the amounts of pollen collected by the

bees, problems of falsification, and so on.

To overcome this problem, and also to save time and
money, attempts have been made to predict the botan-

ical origin of honeys from some of their physicochemical

properties by means of multivariate analyses (Anklam,

1998; Anklam & Radovic, 2001; Goodall, Dennis, Par-

ker, & Sharman, 1995; Krauze & Zalewski, 1991; Mateo

& Bosch-Reig, 1997; Popek, 2002; Terrab, Diez, &

Heredia, 2002). Undoubtedly, the obtained results

clearly show that it is not a wishful thinking. However,

mail to: j.devillers@ctis.fr


306 J. Devillers et al. / Food Chemistry 86 (2004) 305–312
most of the studies are based on a fairly limited number

of honey samples. Moreover, when models are designed

from discriminant analysis (DA) or related techniques,

the predictive power of these models is never estimated

on an external testing set while it is the sine qua non in
simulation modeling (Devillers & Karcher, 1991).

Consequently, the aimof this studywas first to validate

this kind of methodological approach from a large data

base of monofloral honeys for which physicochemical

characteristics were available. Second, attempts were

made to determine the minimum number of physico-

chemical properties required to obtain the best classifi-

cation of honeys according to their botanical origin.
2. Materials and methods

2.1. Honey samples

A data base of 469 monofloral honey samples were

provided by Bernard Michaud S.A. laboratory (F), the
biggest honey producer and conditioner in France. The

botanical origin of the honey was determined by means

of melissopalynological analyses (Louveaux, Maurizo,

& Vorwohl, 1970). Honey samples were of various

geographical origins but were similarly aged. The fol-

lowing seven certified monofloral honey categories were

included: fir (Abies sp.), cinder heather (Erica cinerea),

chestnut (Castanea sativa), lavender (Lavandula sp.),
acacia (Robinia pseudoacacia), rape (Brassica napus),

and sunflower (Helianthus annuus). The number of

samples in each honey category is given in Table 1.

2.2. Analytical determination

The 469 honey samples were analyzed to determine

their 13 following physicochemical characteristics: mois-
ture (Abb�e refractometer, Prolabo, Toulouse, F), con-

ductivity (conductometer LF 537, Prochilab, Bordeaux,

F), diastase activity (after Schade, spectrophotometer

Anth�elie, Secoman, Toulouse, F), pHand free acidity (pH

meter Mettler Toledo MP 225, Mettler, Toulouse, F),

color (Pfund scale, Lovibond 2000 & 1000 comparator),

fructose, glucose, saccharose, erlose, raffinose, and mel-

ezitose content (HPLCDionex 500, pulsed amperometric
detection), hydroxymethylfurfural (HMF) (HPLC Ther-

mo quest Separator P200, AS 100, UV detection). All the

analyses were performed according to the methods in

agreement with EU legislation (Bogdanov et al., 1997).

This yielded the design of a 13� 469 data matrix partic-

ularly suitable for multivariate analyses.

2.3. Data analysis

Principal Component Analysis (PCA) was used to

obtain a reduction of dimensionality of the 13� 469
data matrix and to discover the relationships between

variables (physicochemical properties) and objects

(honey samples) through optimal 2-D graphical dis-

plays. Briefly, PCA replaces the original variables of a

data set with a smaller number of uncorrelated variables
called principal components (PCs). The method is linear

in that the new variables are a linear combination of the

original ones (Devillers & Karcher, 1991). Due to the

nature of the physicochemical data, a classical PCA on

correlation matrix after autoscaling of the variables was

used (Lopez et al., 1996).

For deriving a model allowing to simulate the dif-

ferent types of honey, a discriminant analysis (DA) was
employed. Indeed, DA is a very useful tool (1) for

classifying cases into different groups with a better than

chance accuracy and (2) for detecting the variables al-

lowing the better discrimination between groups. To

reach this goal, a forward stepwise procedure was em-

ployed but confirmation of the results was also obtained

by using the backward stepwise option. The addition or

removal of a variable or effect was based on the p or F
values to enter/remove (Devillers & Karcher, 1991).

All the statistical analyses were performed with ADE-

4 (http://pbil.univ-lyon1.fr/ADE-4/ADE-4.html; Devil-

lers & Dor�e, 2002) and StatisticaTM Version 6 (StatSoft,

France).
3. Results and discussion

The analytical results are summarized in Table 1.

Inspection of this table shows that some parameters

have a high discriminatory power. This is the case, for

example, for the conductivity, color, erlose, rafinose or

melezitose. Conversely, other physicochemical proper-

ties do not widely vary from one honey to another.

Thus, for example, if we consider the minimum (Min)
and maximum (Max) values of humidity measured for

the 7 types of honey, no significant differences are found

(Table 1).

In order to cluster the seven botanical types of honeys

from their physicochemical properties, a standardized

PCA was used.

PC1PC2 accounts for 59.53% (i.e., 37.51%+22.02%)

of the total inertia of the system. Even if it should be
necessary to consider the other PCs to deeply analyze

the studied data matrix (Fig. 1A), we assume that this

first factorial plane allows us to stress the main trends in

the data.

Fig. 1B shows that the 469 honey samples are split

into four leading clusters. Because a code was used to

represent each category of honey, it is easy to see on the

figure that these clusters correspond to specific honey
types. Thus, all the fir honey samples (code number 1)

are isolated in the right part of Fig. 1B and form a

strong cluster. This is also the case for the chestnut

http://pbil.univ-lyon1.fr/ADE-4/ADE-4.html


Table 1

Physicochemical characteristics of the 469 honey samples

Botanical origin Mean SDa Min Max

Parameter

Fir (n ¼57)

Moisture (%) 17.60 0.581 16.20 18.80

HMF (mg/kg) 3.490 2.143 0.100 7.500

Conductivity (ls/cm) 1069 122.2 870.0 1403

Diastase activity (ID) 24.15 3.777 18.49 33.16

pH 5.151 0.286 4.750 5.790

Free acidity (meq/kg) 24.24 3.535 14.62 30.49

Color (mm Pfund) 75.00 6.682 65.00 85.00

Fructose (%) 33.37 1.422 29.56 36.46

Glucose (%) 25.63 1.592 22.25 28.69

Saccharose (%) 1.352 0.609 0.450 2.590

Erlose (%) 0.816 0.200 0.320 1.110

Raffinose (%) 1.565 0.468 0.920 2.860

Melezitose (%) 2.217 0.481 0.960 3.120

Cinder heather (n ¼43)

Moisture (%) 18.21 0.510 17.00 19.50

HMF (mg/kg) 5.162 2.646 1.230 10.81

Conductivity (ls/cm) 604.2 66.16 469.0 769.0

Diastase activity (ID) 14.73 3.002 8.560 21.35

pH 4.064 0.154 3.780 4.360

Free acidity (meq/kg) 18.96 1.728 15.23 22.56

Color (mm Pfund) 62.56 10.49 40.00 85.00

Fructose (%) 40.17 1.213 37.90 42.59

Glucose (%) 35.75 1.396 33.25 38.96

Saccharose (%) 0.122 0.121 0 0.400

Erlose (%) 0 0 0 0

Raffinose (%) 0 0 0 0

Melezitose (%) 0 0 0 0

Chestnut (n ¼62)

Moisture (%) 18.79 0.857 17.00 20.50

HMF (mg/kg) 2.653 2.119 0.100 8.430

Conductivity (ls/cm) 1308 363.1 785.0 1883

Diastase activity (ID) 23.29 3.747 15.93 32.00

pH 5.283 0.461 4.360 6.480

Free acidity (meq/kg) 12.20 2.517 8.210 17.98

Color (mm Pfund) 81.13 7.489 65.00 100.0

Fructose (%) 37.39 1.374 34.98 40.84

Glucose (%) 31.60 1.885 29.18 39.99

Saccharose (%) 0.250 0.280 0 1.150

Erlose (%) 0.047 0.083 0 0.330

Raffinose (%) 0.218 0.247 0 0.840

Melezitose (%) 0.423 0.307 0 1.150

Lavender (n ¼57)

Moisture (%) 16.70 0.485 15.60 17.60

HMF (mg/kg) 3.205 1.490 0.990 6.770

Conductivity (ls/cm) 221.2 52.58 22.00 310.0

Diastase activity (ID) 14.51 1.964 10.51 19.72

pH 3.702 0.083 3.460 3.860

Free acidity (meq/kg) 14.86 1.447 10.87 17.45

Color (mm Pfund) 33.60 6.392 20.00 45.00

Fructose (%) 35.51 1.085 32.65 37.54

Glucose (%) 31.37 1.829 27.98 34.95

Saccharose (%) 2.689 0.852 0.190 4.370

Erlose (%) 0.922 0.564 0.210 3.100

Raffinose (%) 0 0 0 0

Melezitose (%) 0 0 0 0

Acacia (n ¼34)

Moisture (%) 18.48 0.690 17.20 20.30

HMF (mg/kg) 2.462 1.338 0.590 5.900

Conductivity (ls/cm) 195.4 40.46 120.0 289.0
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Table 1 (continued)

Botanical origin Mean SDa Min Max

Parameter

Diastase activity (ID) 19.03 6.568 10.23 33.25

pH 3.897 0.127 3.620 4.120

Free acidity (meq/kg) 8.954 1.171 6.300 11.36

Color (mm Pfund) 7.647 4.126 5.000 25.00

Fructose (%) 39.81 1.107 38.20 42.90

Glucose (%) 26.88 1.149 24.20 28.95

Saccharose (%) 2.049 1.239 0.230 5.300

Erlose (%) 1.554 0.610 0.450 2.500

Raffinose (%) 0 0 0 0

Melezitose (%) 0 0 0 0

Rape (n ¼96)

Moisture (%) 18.46 0.655 17.00 19.80

HMF (mg/kg) 3.196 1.665 0.210 5.950

Conductivity (ls/cm) 203.1 44.35 110.0 269.0

Diastase activity (ID) 26.85 5.911 11.20 36.80

pH 4.019 0.119 3.700 4.260

Free acidity (meq/kg) 10.66 1.318 6.510 12.30

Color (mm Pfund) 25.99 4.079 20.00 35.00

Fructose (%) 37.90 1.218 34.20 39.60

Glucose (%) 40.74 1.320 35.20 42.40

Saccharose (%) 0 0 0 0

Erlose (%) 0 0 0 0

Raffinose (%) 0 0 0 0

Melezitose (%) 0 0 0 0

Sunflower (n ¼120)

Moisture (%) 18.19 0.566 16.60 19.40

HMF (mg/kg) 3.191 1.849 0.230 9.560

Conductivity (ls/cm) 306.2 57.47 230.0 500.0

Diastase activity (ID) 25.04 5.653 16.23 38.56

pH 3.888 0.087 3.660 4.090

Free acidity (meq/kg) 19.91 3.423 14.23 26.59

Color (mm Pfund) 47.25 6.606 30.00 55.00

Fructose (%) 38.76 1.048 36.25 41.10

Glucose (%) 37.62 1.071 35.10 40.20

Saccharose (%) 0.227 0.146 0 0.500

Erlose (%) 0 0 0 0

Raffinose (%) 0 0 0 0

Melezitose (%) 0 0 0 0

Total (n ¼469)

Moisture (%) 18.09 0.874 15.60 20.50

HMF (mg/kg) 3.287 2.006 0.100 10.81

Conductivity (ls/cm) 519.2 437.7 22.00 1883

Diastase activity (ID) 22.41 6.574 8.560 38.56

pH 4.247 0.616 3.460 6.480

Free acidity (meq/kg) 16.03 5.548 6.300 30.49

Color (mm Pfund) 47.62 23.23 5.000 100.0

Fructose (%) 37.56 2.339 29.56 42.90

Glucose (%) 34.30 5.366 22.25 42.40

Saccharose (%) 0.742 1.066 0 5.300

Erlose (%) 0.330 0.567 0 3.100

Raffinose (%) 0.219 0.539 0 2.860

Melezitose (%) 0.325 0.746 0 3.120

Min, minimum; Max, maximum.
a SD, standard deviation.
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honeys (code number 3), which are all displayed in the

middle bottom part of Fig. 1B. Cinder heather honey

(number 2), rape honey (number 6) and sunflower honey

(number 7) samples are mixed together and located in

the left part of Fig. 1B into a fairly compact cluster. The
top of Fig. 1B is only occupied by the lavender honey

(number 4) and acacia honey (number 5) samples. It is

noteworthy that two samples of acacia honey and one

sample of rape honey are mixed between their corre-

sponding cluster. The classical way to see the variables



Fig. 1. Ordination resulting from the PCA of the 469 honey samples described by 13 physicochemical properties. Histogram of the eigenvalues (A),

samples (B), correlation circle (C).
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responsible for the formation of the four clusters in

Fig. 1B is to inspect the correlation circle (Fig. 1C).

Thus, for example, in Fig. 1C, HMF (hydromethyl-

furfural) being located at the origin of PC1PC2, this

variable does not influence the formation of the clusters

in Fig. 1B. Conversely, the specific location of the fir
honey (code number 1) samples in Fig. 1B is due to their

high percentages of raffinose and melezitose in com-

parison with the other honey types. A more convenient

strategy for interpreting the clusters in Fig. 1B consists

in directly plotting the values of each variable on this

map. This yields a collection of 13 graphs, one per

studied variable (Fig. 2). On each graph the larger the

black circle, the greater the corresponding value and
hence, the higher its influence on the formation of the

corresponding cluster. Thus, for example, Fig. 2 con-

firms that HMF does not participate in the formation of

the clusters. Conversely, erlose mainly explains that

lavender honey and acacia honey form a cluster in

Fig. 1B.

PCA yielding a fairly good separation of the honey

types from their physicochemical properties, it was le-
gitimate to try to derive a quantitative model from dis-

criminant analysis (DA). Obviously, the challenge was

to model the seven types of honey and not their clusters

as they appear in Fig. 1B. The data base was split into a

training set for building the DA model and an external

testing set for estimating its simulation performances.
Because in DA, it is required to have balanced classes,

the number of rape and sunflower honey samples ran-

domly allocated to the testing set was higher than this

for the other honeys (see Table 1). The training set of

364 samples included 52 fir honey samples, 38 cinder

honey samples, 56 chestnut honey samples, 52 lavender

honey samples, 30 acacia honey samples, 68 rape honey

samples, and 68 sunflower honey samples. The external
testing set of 105 samples included 5 fir honey samples, 5

cinder honey samples, 6 chestnut honey samples, 5 lav-

ender honey samples, 4 acacia honey samples, 28 rape

honey samples, and 52 sunflower honey samples.

Because HMF did not participate in the clustering of

the honey samples (Fig. 1), DA was performed from the

12 remaining variables. The forward and backward

stepwise options were used for selecting the most



Fig. 2. Projection of the values of each variable on PC1PC2 (Fig. 1B). The higher the circle, the greater the value.
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interesting variables allowing to obtain the better sim-

ulation results with the training set and more important,

with the external testing set. A DA model only including

conductivity, pH, free acidity, and percentage of fruc-

tose, glucose, and raffinose as variables yielded 100% of

good classification with both the training and testing

sets. The raw canonical discriminant function (DF) co-

efficients are given in Table 2. They can be used to
compute the raw canonical scores for each case and DF.

From them, it is possible to verify the modeling results

or to perform new simulations. The standardized ca-

nonical DF coefficients, the eigenvalues for each DF,

and the cumulative proportion of common variance

extracted by each DF are displayed in Table 3. Inspec-
Table 2

Raw canonical discriminant function (DF) coefficients

Parameter DF1 DF2 DF3

Intercept 1.86497 )11.8603 )23.9458
Conductivity 0.00248 0.0021 0.0035

pH 1.80681 0.8415 1.9151

Free acidity 0.04535 )0.2026 0.0170

Fructose 0.11645 0.5884 )0.0661
Glucose )0.49064 )0.3237 0.4782

Raffinose 1.44196 )3.3296 )0.3258
tion of Table 3 reveals that the first discriminant func-

tion is principally under the dependence of % glucose,

pH, and conductivity. The percentages of fructose and

raffinose and free acidity dominate the second one. Our

results are in agreement with those found in the litera-

ture. Thus, Mateo and Bosch-Reig (1997) and Terrab,

Vega-P�erez, Diez, and Heredia (2001) showed that it

was possible to discriminate unifloral honeys from their
sugar profile. Terrab, Diez & Heredia (2002) stressed the

importance of pH for discriminating eucalyptus, citrus,

lythrum, apiaceae, and honeydew honey samples.

However, while the free acidity parameter was selected

by their DA model, it is noteworthy that the standard-

ized coefficient of this variable was inferior to that ob-
DF4 DF5 DF6

11.61571 24.09737 )9.36904
)0.00251 0.00176 )0.00382
1.28633 )0.71464 3.15825

)0.35657 0.05531 0.10215

)0.36868 )0.57651 )0.04337
0.09455 )0.01768 )0.04882
2.18030 )2.84663 )1.67979



Fig. 3. Scatterplot of the canonical scores obtained with the two first discriminant functions. Nos. 1–7 represent the different honey categories.

Table 3

Standardized canonical discriminant function (DF) coefficients, eigenvalues, and cumulative proportion of common variance extracted by each DF

Parameter DF1 DF2 DF3 DF4 DF5 DF6

Conductivity 0.38723 0.321437 0.542023 )0.392096 0.274808 )0.596570
pH 0.41624 0.193857 0.441181 0.296331 )0.164631 0.727565

Free acidity 0.10875 )0.485966 0.040685 )0.855171 0.132658 0.244989

Fructose 0.14616 0.738527 )0.082936 )0.462750 )0.723601 )0.054436
Glucose )0.71373 )0.470927 0.695567 0.137536 )0.025716 )0.071012
Raffinose 0.28290 )0.653231 )0.063923 0.427753 )0.558480 )0.329557

Eigenvalue 21.85513 7.251658 6.290780 2.782504 0.659128 0.027844

Cumulative 0.56230 0.748881 0.910735 0.982325 0.999284 1.000000

proportion
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tained which the lactonic acidity/free acidity ratio pa-

rameter.

To visualize the discrimination power of the model,

a simple 2D scatterplot of the canonical scores ob-

tained with the two first discriminant functions has

been represented in Fig. 3 with Voronoi tessellations to

better underline the clusters (Okabe, Boots, Sugihara,

& Chiu, 1999). While only about 75% of the variance
are extracted with these two functions (Table 3), a

fairly good separation of the honeys is obtained. In-

deed, only cinder heather honey samples (number 2)

and lavender honey samples (number 4) are not well

separated.

In this study, an attempt was made to discriminate

seven types of unifloral honeys from a minimum of their

physicochemical characteristics. A discriminant model,
using conductivity, pH, free acidity and the percentage
of fructose, glucose, and raffinose of the honeys as

variables, allows to perfectly reach this goal. This model

allows us to save time and money in the determination

of the floral origin of honey. However, to be used in

practice, it should be necessary to extend its domain of

application to other categories of unifloral honeys. This

will be the goal of our future work.
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